Skip to content

Taylor Series

Tags
Calculus
Cegep/1
Cegep/2
Word count
186 words
Reading time
2 minutes

Power series that estimates a function in terms of its derivatives at a single point
Extension of linear approximation

f(x)=n=0f(n)(a)n!(xa)n

[!abstract]+ Taylor polynomial
nth partial sum of a Taylor series

Pn(x)=i=0nf(i)(a)i!(xa)i

$a$ is called the **center of approximation**.

Examples

Estimate f(x)=arctanx at x=0.

n0123
f(n)(x)arctanx11+x22x(1+x2)22(3x21)(1+x2)3
f(n)(1)π4121212

So,

P3(x)=f(0)(1)0!(x1)0+f(1)(1)1!(x1)1+f(2)(1)2!(x1)2+f(3)(1)3!(x1)3=π4+12(x1)14(x1)2+112(x1)3P3(0)=π4+12(01)14(01)2+112(01)3=π41214112=3π1012

Contributors

Changelog